(Institución)

OceanDocs >
Latin America >
ARGENTINA >
Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP) >
4. Publicaciones especiales del INIDEP >

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/1834/2560

Título : Introducción al análisis Bayesiano
Otros títulos : Introduction to the Bayesian Analysis
Autor : Hernandez, D.R.
ASFA Terms: Statistical analysis
Statistical models
Fishery resources
Stock assessment
Prediction
Probability theory
Fecha de publicación : 2007
Resumen : An introduction to the Bayesian Analysis is presented and conceptual aspects highlighted. Initially, the probability concept is analyzed from its objective perspective such as frequency, and from its subjective perspective such as degree of belief. It is discussed how, within the context of Bayesian statistics, probability as degree of belief allows to give sense to the probability of a hypothesis and, therefore, enables to resolve problems of scientific interest that could not be otherwise addressed. The likelihood concept is discussed and the Bayes formula, which integrates a priori information and knowledge with information provided by current data demonstrated. Basic concepts of the Decision Theory within the Bayesian perspective are introduced. The SIR (Sampling Importance Resampling) algorithm is presented as a tool to carry out a Bayesian Analysis with numerical techniques. Finally, an application example in fisheries considering Shaefer biomass dynamics model is shown.
Se presenta una introducción al Análisis Bayesiano donde se destacan, esencialmente, los aspectos conceptuales. Se analiza inicialmente el concepto de probabilidad desde su perspectiva objetiva tal como frecuencia, y desde su perspectiva subjetiva tal como grado de creencia. Se discute cómo, en el contexto de la estadística Bayesiana, la probabilidad como grado de creencia permite darle sentido a la probabilidad de una hipótesis y por lo tanto habilita a resolver problemas de interés científico que de otra forma serían inabordables. Se discute el concepto de verosimilitud y se demuestra la fórmula de Bayes que integra información y conocimiento a priori con la información proporcionada por los datos actuales. Se introducen conceptos básicos de la Teoría de la Decisión en el contexto Bayesiano. Se presenta el algoritmo SIR (Sampling Importance Resampling) como herramienta para realizar un Análisis Bayesiano con técnicas numéricas. Por último, se muestra un ejemplo de aplicación en pesquerías considerando el modelo de dinámica de biomasa de Schaefer.
URI : http://hdl.handle.net/1834/2560
ISBN : 978-987-1443-01-7
Aparece en las colecciones: 4. Publicaciones especiales del INIDEP

Ficheros en este ítem:

Fichero Descripción Tamaño Formato
INIDEP Bayesiano.pdfPublished version2.31 MBAdobe PDFVisualizar/Abrir

Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.